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LETTER TO THE EDITOR 

Two kinds of mode coupling contributions to transport 
coefficients 

Kyozi Kawasaki 
Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, 
USA 

MS received 27 November 1972 

Abstract. The two types of mode coupling contributions to transport coefficients are 
distinguished. The first type arises from drift terms in the starting generalized 
Langevin equation and gives a positive contribution to transport coefficients whereas 
the second type comes from dissipative terms and gives a negative contribution, 

In recent years nonlinear coupling among hydrodynamic modes was found to play a 
rather important role in transport phenomena (Kawasaki 1972a, Zwanzig 1972, and 
the references quoted therein). Such coupling can arise either from (i) streaming terms 
in hydrodynamic equations or from (ii) dissipative terms through the dependence of 
‘bare’ transport coefficients upon hydrodynamic variables or through nonlinearities 
in thermodynamic driving forces, which we denote as I and J, respectively. Here we 
demonstrate that these two types of coupling give contributions of opposite signs to 
transport coefficients. 

We start from the following generalized nonlinear Langevin equation for the gross 
variables {ar} without memory effects (eg Kawasaki 1972a, and to be published): 

where wi is the first moment frequency (eg Mori 1965) and yt is the ‘bare’ damping 
constant. It(t) and Ji(t)  are the functions of {a,(?)} representing nonlinear mode coup- 
ling for at arising from drift and dissipative terms, respectively, and are chosen to be 
‘orthogonal’ to {at}: 

(Ira,* ) = (Jta,*) = 0 (2) 
where (. . .) is the equilibrium average. The gross variables are also chosen to be 
orthonormal: (ais,*) = ai,. fi(t) is the random force ‘orthogonal’ to any function 
of {a) ; 

(fr(t>W40>})* ) = 0, t >< 0. (3) 
We also need the generalized Langevin equation for negative times where all the dis- 
sipative terms must change their signs : 

We now introduce the propagator Gr(t) given by (al(t)ar*(0)) for t 5 0. We then find 
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from (1) and (3) the following : 

where the stationarity condition of time correlation functions has been used also. 
For at*( - t )  in ( 5 )  we substitute the integral form of (4) (Kawasaki 1970) which is now 
written as 

at*( - t )  = Gt*( - t)at*(0) - dsG,*( - t +s)f:(  -3) - dsGto*( - t +s) 

(6) 

sl 
t > O  

sl 
x(It*(-s)-JJt*(-s))  

where Gt(r) = exp(iwi T yi)t for t >< 0 is the free propagator. Using (2) and (3) we 
then obtain 

with 

d 
dt - Gi(0 = (ioi -yJG,(t) - dsAPi'(s)G,O(t-s) 

In the language of formal perturbation theory, the 'self-energy' AI';(t) is improper in 
the sense that it still contains intermediate states with a single mode i excited, which 
have to be removed to obtain the proper self-energy AI',(t). A simple way of achieving 
this is to remove from I ,  and Ji any terms involving ai ,  and to replace Gto(t -s) by 
G,(t-8). The resulting nonlinear coupling terms are again denoted as I* and Ji. 
The error committed should vanish in the thermodynamic limit where i is in fact 
quasi-continuous. Thus, (7) now reduces to 

t d - Gr(6) = ( iw i -y i )G , ( t ) -  dsAP,(s)Gi(t-s) 
dt 0 

with 

and 
Ar,(t) = AI':(t) -Al?t(t) + Ar,"(t) 

(9) 

Ar*'(t) = (Zi(t)li*(O) >, A.r,.'(O = <J,(t)Ji*(O) > , (1 1) 

AI'tzJ(t) being the cross terms involving both Z and J .  If GI is replaced by the non- 
equiIibrium average of ai in (lo), it is nothing but the linearized macroscopic equations 
of motion, and AI',(s) contributes to the frequency-dependent complex damping 
constant (or transport coefficient) !?,(U); 

with 
fi(w) = yi+Afi(w) (12) 

m 

A?,(w) [ e-'OtAr,(r)dt, 
J o  

etc. Then, it is well known and can be easily shown that 

Rehf,'(w) > 0 (13) 
ReAf,J(w) 2 0. (14) 

Thus, we have demonstrated that mode couplings arising from the drift terms and 
from the dissipative terms in (1) give positive and negative contributions to f',(w), 
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respectively. For the cross term pi'J((w) no such definite statement can be made. 
However, one can show that r i I J ( t )  vanishes for t = 0, and its contribution to Re P i ( w )  
is not likely to be important. 

The past applications of the mode coupling theory were primarily concerned with 
Apt'(  U )  which was responsible for divergences in transport coefficients near a critical 
point (Kawasaki 1972a). On the other hand, in the hermitian kinetic Ising model 
(Kawasaki 1972b) where only dissipative terms are present, mode coupling contribu- 
tions are shown to decrease the 'bare' damping constant in the second order perturba- 
tion theory (Halperin et al 1972), which is consistent with our general result (14). 

This work was supported by the National Science Foundation. 
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